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We study the zero-temperature persistence phenomenon in the random bond ±J Ising model on a square
lattice via extensive numerical simulations. We find strong evidence for “blocking” regardless of the amount
disorder present in the system. The fraction of spins which never flips displays interesting nonmonotonic,
double-humped behavior as the concentration of ferromagnetic bonds p is varied from zero to one. The peak
is identified with the onset of the zero-temperature spin glass transition in the model. The residual persistence
is found to decay algebraically and the persistence exponent ��p��0.9 over the range 0.1� p�0.9. Our results
are completely consistent with the result of Gandolfi, Newman, and Stein for infinite systems that this model
has “mixed” behavior, namely positive fractions of spins that flip finitely and infinitely often, respectively.
�Gandolfi, Newman and Stein, Commun. Math. Phys. 214, 373 �2000�.�
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I. INTRODUCTION

In recent years there has been considerable interest in
the “persistence” problem �1–11� and it has been studied
theoretically in a wide range of systems. Generically, this
problem is concerned with the fraction of space which per-
sists in its initial �t=0� state up to some later time. Thus,
when studying the nonequilibrium dynamical behavior of
spin systems at zero-temperature we are interested in the
fraction of spins, P�t�, that persists for t�0 in the same state
as at t=0.

It has now been established for quite some time that for
the pure ferromagnetic two-dimensional Ising model, P�t�
decays algebraically �1–4�

P�t� � t−�, �1�

where �=0.209±0.002 �5�. Similar algebraic decay has been
found in numerous other systems displaying persistence

�10,11�. However, computer simulations of the Ising model
in high dimensions �3�, d�4, and the q-state Potts model
�12� �q�4� have suggested the presence of a nonvanishing
persistence probability as t→�; this feature is sometimes
referred to as “blocking” and has also been found to be
present in some models containing disorder �5,6,13–15�.
Clearly, if P����0, the problem can be reformulated by
restricting attention only to those spins that eventually do
flip. Therefore, we can study the behavior of the residual
persistence

r�t� = P�t� − P��� . �2�

Most of the initial effort was restricted to studying pure sys-
tems and, it’s only fairly recently that the persistence behav-
ior of systems containing disorder has been studied
�5,6,13–15�. Very recently �16�, the local persistence expo-
nent for the axial next-nearest neighbor Ising model has been

FIG. 1. A log-log plot of the persistence
against time for a range of bond concentrations,
0.1� p�0.5. Note that the data for p=0.5 are
superimposed over those for p=0.4.
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estimated to be �=0.69±0.01; a value considerably different
to that found for the ferromagnetic Ising model.

Numerical simulations of the bond diluted Ising model
�5,6� indicate that the long-time behavior of the system de-
pends on the amount of disorder present. For the weakly
diluted system �5�, there is evidence of nonalgebraic decay
prior to blocking. For the strongly diluted model, on the
other hand, the residual persistence probability decreases ex-
ponentially for large times �6�.

Although the presence of a blocked state has also been
suggested �13–15� for the random bond Ising model in two
dimensions, the long-time behavior of the residual persis-
tence has not been investigated to date and is still an open
question.

In this work we attempt to fill the gap by presenting new
results of extensive computer simulations of the two-
dimensional random bond Ising model on a square lattice
for a wide range of bond concentrations. Our main objective
is to investigate the persistence behavior as a function of
the ferromagnetic bond concentration. As we shall see,

we find strong evidence for blocking regardless of the
amount of disorder present in the system. Furthermore, un-
like the bond-diluted case �5,6�, here the qualitative behavior
of the model does not appear to depend on the concentration
of the disorder.

In Sec. II we introduce the model and give brief details
about the method used to perform the simulations. In Sec. III
we discuss the results and finish with some concluding
remarks.

II. THE MODEL

The Hamiltonian for our model is given by

H = − �
�ij	

JijSiSj , �3�

where Si= ±1 are Ising spins situated on every site of a
square lattice with periodic boundary conditions and the
quenched ferromagnetic exchange interactions are selected
from a binary distribution given by

FIG. 2. A plot of ln P�t� against ln t for 0.95
� p�0.999. The straight line, corresponding to
the behavior for the pure �p=1.0� case, has gra-
dient −0.21.

FIG. 3. A plot of the blocking probability,
P���, against the bond concentration, p.
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P�Jij� = �1 − p���Jij + J� + p��Jij − J� , �4�

where p is the concentration of ferromagnetic bonds and we
set J=1; the summation in Eq. �3� runs over all nearest-
neighbor pairs only. Note that for p=1/2 and p=1 we obtain
the Ising spin glass and the pure ferromagnetic Ising models,
respectively.

Initial runs for a range of ferromagnetic bond concentra-
tions were performed for lattices of linear dimensions rang-
ing from L=250 to L=1000. No appreciable finite-size ef-
fects were evident for the range of values considered. As a
result, the data presented in this work were obtained for a
lattice with dimensions 500�500 �=N�.

Each simulation run begins at t=0 with a random starting
configuration of the spins and then we update the lattice via
single spin flip zero-temperature Glauber dynamics �5�. The
updating rule we use is always flip if the energy change is
negative, never flip if the energy change is positive, and flip
at random if the energy change is zero.

The number, n�t�, of spins which have never flipped until
time t is then counted. The persistence probability is defined
by �1�

P�t� = ��n�t�	�/N , �5�

where �¯	 indicates an average over different initial condi-
tions and �¯� denotes an average over samples. Averages
over at least 100 different initial conditions and samples
were performed for each run undertaken.

III. RESULTS

We now discuss our results. The behavior of the persis-
tence probability is displayed in the log-log plot shown
in Fig. 1 �0.1� p�0.5�. The problem is symmetric about
the spin-glass �p=0.5� case and, as a check on the numerics,
we confirmed that similar plots were obtained for
�0.5� p�0.9�. Note that the error bars are smaller than the

FIG. 4. Here we show a log-log plot of the
residual persistence against time for selected
bond concentrations. The straight lines are guides
to the eye and indicate that �=0.97�8�, 0.83�3�,
and 0.85�4� for p=0.1, 0.5, and 0.9, respectively.

FIG. 5. A plot of ��p� against p. For refer-
ence, the arrows indicate where the pure, ferro-
magnetic �p=1.0� and antiferromagnetic �p=0�,
values appear on the plot.
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size of the data points. It is clear from the figure that P�t� is
finite in the long-time limit. Hence, the system is blocked.
The blocking probability depends on p, the concentration of
ferromagnetic bonds present. However, it would appear that
blocking occurs for all of the values of p considered.

To explore the blocking feature further, we plot in Fig. 2
the data over a narrow range very close to the pure
case, namely 0.95� p�0.999. For reference purposes, the
straight line in Fig. 2 has a slope of −0.21 and corresponds to
the well-established persistence exponent for the pure case
p=1.0. It’s clear from Fig. 2 that we have deviations from
the pure case even when p=0.999. For all values of ferro-
magnetic bond concentrations p�1 we have a finite fraction
of spins which never flip. Furthermore, the blocking prob-
ability, P���, also appears to be highly sensitive to the value
of p.

In order to examine the behavior of the blocking probabil-
ity, we plot in Fig. 3 the values extracted for P��� from Figs.
1 and 2 against the bond concentration. Note that Fig. 3
shows the values of P��� for a wide range of p :0� p�1,
including some values which have not been displayed in the
earlier figures for clarity. Once again, the symmetry of the
plot about p=0.5 acts as a consistency check on the numer-
ics. The plot itself appears to have an interesting nonmono-
tonic, double-humped feature. In our model the average frac-
tion of frustrated plaquettes, fplaq is given by �17�

fplaq = 4p�1 − p��p2 + �1 − p�2� �6�

and there is a zero-temperature spin glass transition at
pc�0.11 �18�. We see from Fig. 3 that the peak in the block-
ing probability coincides with this value of pc. Furthermore,
fplaq�pc�0.11��0.31	1/2, the maximum value of fplaq.

As explained earlier, for a blocked system, we can study
the residual persistence r�t�= P�t�− P���. After having ex-
tracted the blocking probability for each p, we calculate r�t�.
However, there is an error involved in estimating P���. As a
consequence, the error in r�t� is much greater than that in the
original persistence probability. In Fig. 4 we show log-log

plots of r�t� against t for three selected values of p=0.1, 0.5,
and 0.9. In each case, we see that the decay of the residual
persistence is algebraic over the time interval concerned.
However, because of the uncertainty in the blocking prob-
ability, there are not inconsiderable error bars attached to the
resulting �residual� persistence exponents.

Our estimates for the persistence exponents, ��p�, are
plotted against the bond concentrations in Fig. 5. It would
appear that 0.8���p��1.1 when 0.1� p�0.9. For refer-
ence, the exponent for the pure case is indicated by the ar-
row. Note that although our data are not influenced by finite-
size effects, it is nevertheless a nontrivial matter to extract
the residual persistence exponent for 0	 p	0.1 because of
the sensitivity to the estimate of P���. As can be deduced
from Fig. 2, the closer we are to the pure case, the more
difficult it is to estimate the blocking probability.

IV. CONCLUSION

To conclude, we have presented data for the random
bond Ising models on a square lattice. Our results confirm
the existence of blocking in the system regardless of
the amount of disorder present. The results are consistent
with the presence of positive fractions of spins which
flip finitely and infinitely often, respectively. We have also
investigated the blocking probability and find interesting
nonmonotonic behavior as a function of the ferromagnetic
bond concentration. The persistence exponent has been ex-
tracted and found to be �0.9, independent of the bond con-
centration over the range 0.1� p�0.9. Although we know
that ��p=1.0�=0.209±0.002 �5�, an accurate extraction of
the residual persistence exponent for p close to 1 is highly
sensitive to the �assumed� value for P���. As a consequence,
the complete nature of ��p� over the entire range of bond
concentrations remains to be established.
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